
Re-processing Abbyy outputs

Lou Burnard Consulting 2019-09-15

1 Choosing your text
Please begin by selecting a text you would like to work on, in a language which you are
comfortable with handling. The following items are available in your Work/Novels folder:

Identifier Title PDF filename Other formats Wordcount
ENG18410 Cecil, or, The adven-

tures of a coxcomb
ENG18410_Gore abbyy.xml

ENG18470 The Castle of Ehren-
stein

ENG18470_James abbyy.xml

ENG19150 Pointed Roofs ENG19150_Richardson abbyy.xml, docx
FRA19120 Vers le pole en aero-

plane
FRA19120_Gilbert abbyy.xml, docx

HUN18460 Meghasonlott Kedely HUN18460_Kelmenfy abbyy.xml, docx
HUN19090 Végzetes Tévedésh - HUN19090_Beniczkyne.docx
HUN19180 A három galamb - HUN19180_Kehel.html
ROM18860 Teodorei: copila dom-

nului din bucuresti
ROM18860_Macri abbyy.xml, docx

ROM19060 Mara ROM19060_Slavici abbyy.xml, docx
ROM19170 Domnul Badina ROM19170_Smara abbyy.xml
SRP18860 Omer Čelebija SRP18860_Milicevic abbyy.xml

Each file with extension .pdf contains a digitized representation of an original printed source,
which has been processed by Abbyy OCR. Take a look at this to determine what metadata
you can extract for use in the header of your file, and also to familiarize yourself with the basic
structure of the text – whether it has prefaces etc.

Use online resources (WorldCat, Wikipedia, etc.) to collect other required metadata, such as
the full name of the author, their dates, sex, etc. When you have this information, proceed to
create a new document and a TEI Header The procedure to follow is described in detail in the
Header Tutorial.

2 Reprocessing abbyy XML format
Each file with extension .abbyy.xml contains an XML representation of the results of the OCR
procedure carried out by Abbyy. This representation is quite verbose and contains much
information we don’t need, but it is easy to translate it to a basic TEI form using an XSLT
stylesheet. We won’t be teaching you XSLT (a standard language for converting one XML
document to another) but we have provided a suitable stylesheet for this task. In oXygen,
the easiest way to use it is to use a named ‘transformation scenario’. We have created such a
scenario for you: to use it,

• Open the abby.xml file of your choice in oXygen

• With this file open in the editor, click the big red triangle icon on the toolbar, type CTRL-
SHIFT-T, or select Document -> Transformation -> Apply Transformation Scenario from
the menu

tutorial-hdr.html


2 REPROCESSING ABBYY XML FORMAT

• If you have set a default transformation, it will be applied; if not the Transform with dialog
box appears. Select the abby2tei transformation to associate it and then click the Apply
Associated button.

• After a brief delay, you should see a much less richly tagged version of the text.

Comparing this version with the PDF file you opened earlier, you can see that the tag <pb/>
indicates the start of a new page in the original. Each line of the output corresponds with a
typographic line in the source. Blocks of text are tagged with a <p> element, though not all of
them are paragraphs. Where there was a non-textual image in the original, the <gap> element
appears. And of course there are probably quite a few character recognition errors, especially
if the original printed text was unclear or damaged.

There is no automatically generated tagging beyond this; we will therefore have to add it by
hand. Refresh your memory about the basic structure of an ELTeC-0 text: any front matter,
such as the titlepage or a preface, should be wrapped in a <front>, while the text itself should
be contained by a <body> element, grouping containing <div> elements.

It’s up to you how you do this. Here’s a suggestion:

• Type CTRL-A to select the whole text

• Type CTRL-E and surround the whole text with a <text> element.

• If you have front matter:

– insert a <front> element at the start of your <text>
– Select the paragraphs making up the titlepage, correct them, and wrap them in a
<div type="titlepage"> inside the <front>

– Decide whether any other prefatory matter is authorial: if it is, wrap it in a <div
type="liminal">, also inside the <front>. If it isn’t, remove it.

• Add a <body> element to contain the body of the text, and within it at least one <div
type="chapter">

Your next challenge is to identify the chapter divisions. You may be able to detect them using
a regexp to search for specific words, as in the Polish texts, but this is not guaranteed. A text
may not have any chapter divisions at all, in which case our schema requires you to wrap the
whole thing in one <div type="chapter">. Or they may not have been correctly identified
by the OCR, in which case you may have to split the current <div> element at the right place,
using ALT-SHIFT-D for example. Use the Outline view (Document->Show View->Outline) to
see the emerging structure of your document.

At some point you will want to tidy up the text a little: some things that would be easy to
fix are:

• end-of-line hyphenation (where a word is broken across a line) is indicated by the special
character ¬. This makes it easy to join words up again: use a regexp to remove all
occurrences of ¬\n

• The <pb/> tag is followed by any running header or page number in the original source,
tagged as a separate <p> element. You may think it worth writing another regexp to
remove paragraphs containing only digits and spaces or uppercase letters to catch these,
though be careful you don’t remove real parts of the text.

• You may catch some recurrent OCR errors using the spell checker built into oXygen
(remember to set the correct language : you may need to copy the appropriate spelling
files from your Work/Spell directory to ~/.com.oxygenxml/spell)

2



When you’re reasonably happy with the transcription, type CTRL-A to select all of it and
CTRL-C to copy it. Then return to the file in which you prepared your header, move the cursor
to the appropriate point inside the <text> element, and type CTRL-V to paste it. Is the
completed document valid? If not, fix it!

3 Reprocessing docx files
Abbyy also has the useful capability to export its results in Word DOCX format. Here’s a quick
guide to converting this to TEI:

• In oXygen, use the usual Open dialog to select the docx file

• A window labelled Archive Browser opens to the left of the main screen. It shows the file
structure of the docx archive.

• Click the blue key next to the folder called word to see the contents of this folder

• Select the file called document.xml and double click to open it (may take a few moments
if the file is large)

As you see, this is an XML document, with lots of XML tags, using many different namespaces,
most of them defined by Microsoft.

• With the document.xml file open in your main editing window, select Transformation ->
Configure Transformation Scenario(s) from the Document menu. Or type CTRL-SHIFT-C.
Or click the little spanner icon

• For the default DOCX to TEI conversion, check the little box next to DOCX TEI P5 and
press the Apply Associated button

• A new window opens at the bottom of the screen in which oXygen displays messages
relating to the conversion process ; you may safely ignore these.

• In the main editing window, you should now see a TEI-conformant document. (Choose
Document -> Source -> Format and Indent from the menu, or type CTRL-MAJ-P or click
the Indent button if it is displayed as a single line on the screen) Scroll down to see how
the Word styles have been converted.

• Note that many of the paragraphs have a @rend attribute. The values of this attribute
correspond with the Word style used in the original docx file. We could use these values
to make a more intelligent conversion.

We will begin by using oXygen’s built in xPath browser to investigate the tagging more
closely.

• Type //p into the XPath 2.0 box at top left and press return

• Scroll down the list of results which opens below the document editing window

• You can see that most of the <p> elements have similar attributes, usually specifying that
they contain body text, though there are some other formatting values

• Type //p[anchor] into the XPath box and press return again. Abbyy helpfully adds an
anchor element at the start of each section of the document

• Up to you to see how other elements are used... for example, try //hi to see the<hi>
elements

3



3 REPROCESSING DOCX FILES

oXygen also provides a useful way of automating changes to the markup without the trouble
of writing a stylesheet. We will use it to transform all <p> elements containing an <anchor>
into <head> elements.

• Open the refactoring tool (select Refactoring from the Tools menu)

• Scroll down to the Elements section; select rename element

• In the dialogue box which opens, enter //p[anchor] next to Target elements (XPATH)
and <head> next to New local name

• Press the Finish button: by default the changes are applied throughout the whole file

• Inside your new <head> elements you probably now have some redundant tags such as
<anchor> or <hi.>. You can use the Refactoring Tool to get rid of these too: just select
Delete elements rather than rename elements and repeat.

We now have <head> elements identifying the titles of chapters, but no <div> tags. We
suggest using the find and replace command as a simple way of adding these. The search string
should be <head, and the replacement string should be </div><div><div>. Test that this
works as you expect before applying it to the whole file. When you have applied it, don’t forget
to scroll up to the beginning of the text and remove the redundant </div>

You can also use find and replace to get rid of redundant @rend values: simply use (for
example) rend="Body Text (2)" as search string and nothing as replacement for it.

You should now be able to work through the file chapter by chapter, comparing it with the
original PDF as suggested above. Check that each chapter break has been correctly detected
and recorded and remember to save your work!

4


	1 Choosing your text
	2 Reprocessing abbyy XML format
	3 Reprocessing docx files

